$$
\begin{aligned}
& \text { L.S.F. } \\
& \text { CHM201 } \\
& \text { EXAM } 2 \\
& \text { L.S.F. } \\
& \text { ALWAYS READY TO } \\
& \text { HELP! }
\end{aligned}
$$

Multiple Choice Questions:

1. Which of the following statements is true?
a. We can determine the exact location of an electron if we know its energy.
b. An electron in a $2 s$ orbital can have the same n, l, and m quantum numbers as an electron in a 3s orbital.
c. Ni has 2 unpaired electrons in its 3d orbitals.
d. In the building up of atoms, electrons occupy the $4 f$ orbitals before the 6 s orbitals.
e. Only three quantum numbers are needed to uniquely describe an electron.
2. How many electrons can be described by knowing quantum numbers $n=4, \mathrm{l}=3$, $\mathrm{m}=0$?
a. 0
b. 2
c. 6
d. 10
e. 14
3. An element E has the electron configuration $[\mathrm{Kr}] 4 d^{10} 5 s^{2} 5 p^{3}$. What is the formula for the fluoride of E most likely to be?
a. EF_{2}
b. EF_{3}
c. EF
d. EF_{6}
e. EF_{8}

4. What is the electron configuration of Ti^{2+} ?
a. $[\mathrm{Ar}] 2 \mathrm{~s}^{2}$
b. $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{1}$
c. $[\mathrm{Ar}] 3 \mathrm{~d}^{2}$
d. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{2}$
e. None of these
5. An element has the electron configuration $[\mathrm{Kr}] 4 \mathrm{~d}^{10} 5 s^{2} 5 p^{2}$. The element is $a(n)$
a. Nonmetal
b. Transition element
c. Metal
d. Lanthanide
e. Actinide
6. Sodium gaining an electron is an \qquad process, and fluorine gaining an electron is an \qquad process.
a. Endothermic, exothermic
b. Exothermic, endothermic
c. Endothermic, endothermic
d. Exothermic, exothermic
7. Which one of the following isoelectronic species has the smallest radius?
a. Mg^{2+}
b. Na^{+}
c. Ne
d. F^{-}
e. O^{2-}
8. The successive ionization energies for one of the period three elements is listed below. Which element is referred to?

E1	$577.4 \mathrm{~kJ} / \mathrm{mol}$
E 2	$1,816 \mathrm{~kJ} / \mathrm{mol}$
E 3	$2,744 \mathrm{~kJ} / \mathrm{mol}$
E 4	$11,580 \mathrm{~kJ} / \mathrm{mol}$
E 5	$15,030 \mathrm{~kJ} / \mathrm{mol}$

a) Na
b) Mg
c) Al
d) Si
e)P
9. Which of the following sets of quantum numbers is possible for a 3d electron?
a. $\mathrm{n}=3, \mathrm{l}=3, \mathrm{~m}_{\mathrm{l}}=-2, \mathrm{~m}_{\mathrm{s}}=+0.5$
b. $\mathrm{n}=2, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=+1, \mathrm{~m}_{\mathrm{s}}=-0.5$
c. $n=3, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=-0.5$
d. $n=3, l=2, m_{l}=-2, m_{s}=+0.5$
e. $n=4, l=1, m_{l}=+1, m_{s}=+0.5$
10. calculate the wavelength of the fourth line in the Balmer series (the visible series) of the hydrogen spectrum (note that the electron is removed completely)
a. 0.12334 m
b. 24.373 m
c. $2.7353 \times 10^{-7} \mathrm{~m}$
d. $4.1029 \times 10^{-7} \mathrm{~m}$
e. 36.559 m
11. Using the picture below, what process corresponds to the lattice energy?

a. 1
b. 2
c. 3
d. 4 e. 5
12. What is the shape of the $\mathrm{IF}_{4}{ }^{-}$ion?
a. Square planar
b. Tetrahedral
c. Square pyramidal
d. Octahedral
e. T-shaped
13. What molecular shape is pictured below?

a. Linear
b. Tetrahedral
c. Octahedral
d. Planar triangular
e. Trigonal bipyramidal
14. In which case is the bond polarity incorrect?
a. $\delta+\mathrm{H}-\mathrm{F} \delta-$
b. $\delta+\mathrm{Na}-\mathrm{O} \delta-$
c. $\delta+\mathrm{Mg}-\mathrm{H} \delta-$
d. $\delta+\mathrm{Cl}-\mathrm{Br} \delta-$
e. $\delta+\mathrm{C}-\mathrm{O} \delta-$
15. Which of the following molecules has a nonzero dipole moment?
a. CCl_{4}
b. SiF_{4}
c. CS_{2}
d. SO_{3}
e. PBr_{3}
16. Which of the following series is isoelectronic?
a. B, C, N, O
b. $\mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}$
c. $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{K}^{+}, \mathrm{Rb}^{+}$
d. $\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$
e. $\mathrm{Sn}, \mathrm{As}, \mathrm{S}, \mathrm{F}$
17. In which of the following compounds does the bond between the central atom and fluorine have the greatest ionic character?
a. OF_{2}
b. SF_{2}
c. SeF_{2}
d. AsF_{3}
e. SbF_{3}
18. For which of the following can we not draw a stable Lewis structure?
a. PCl_{5}
b. OCl_{6}
c. SCl_{6}
d. All of these have stable Lewis structures
e. None of these have stable Lewis structures
19. Given the following information:
N_{2} bond energy $=941 \mathrm{~kJ} / \mathrm{mol}$
F_{2} bond energy $=154 \mathrm{~kJ} / \mathrm{mol}$
$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{NF}_{3}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-103 \mathrm{~kJ} / \mathrm{mol}$
Calculate the $\mathrm{N} —$ F bond energy.
a. $\quad 113 \mathrm{~kJ} / \mathrm{mol}$
b. $268 \mathrm{~kJ} / \mathrm{mol}$
$317 \mathrm{~kJ} / \mathrm{mol}$
d. $66 \mathrm{~kJ} / \mathrm{mol}$
e. None of these
20. Complete the Lewis structure of the molecule

This molecule has \qquad single bonds and \qquad multiple bonds.
a. 4,2
b. 6,3
c. 11,5
d. 11,2
e. 13,0
21. For which compound is resonance required to describe the structure adequately?
a. PCl_{3}
b. O_{3}
c. HCN
d. NH_{4}^{+}
e. None of these
22. The molecule $\mathrm{XCl}_{5}{ }^{-}$has a square pyramidal shape. Which of the following atoms could be X?
a. O
b. P
c. Xe
d. S

23. Of the following, which molecule has the smallest bond angle?
a. CCl 4
b. NH3
c. SO 2
d. Cl 2 O
24. According to the VSEPR, the electron pairs around NH3 and those around CH4 are arranged
a. Differently, because in each case there are a different number of atoms around the central atom.
b. Differently, because in each case there are a different number of electron pairs around the central atom.
c. The same, because both nitrogen and carbon are in the second period
d. The same, because in each case there are the same number of electron pairs around the central atom
e. Differently or the same, depending on the conditions leading to maximum repulsion.
25. 0.200 mol NO is placed in a one liter flask at 2273 K . After equilibrium is attained, $0.0863 \mathrm{~mol}_{2}$ and $0.0863 \mathrm{~mol} \mathrm{O}_{2}$ are present. What is the K_{p} for this reaction?

$$
2 \mathrm{NO}(\mathrm{~g}) \leftarrow \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a. 9.92
b. 3.15
c. 0.0372
d. 0.576
e. 39.7
26. For the reaction system, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat The conditions that would favor maximum conversion of the reactants to products would be
a. High temperature and high pressure
b. High temperature, pressure unimportant
c. High temperature and low pressure
d. low temperature and high pressure
e. low temperature and low pressure
27. Solid HgO , liquid Hg , and gaseous O_{2} are placed in a glass bulb and allowed to reach equilibrium at a given temperature. $2 \mathrm{HgO}(\mathrm{s}) \longleftrightarrow \rightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=$ +43.4 kcal . The mass of HgO in the bulb could be increased by
a. Adding more Hg
b. Removing some O2
c. Reducing the volume of the bulb
d. Increasing the temperature
e. Removing some Hg
28. Which of the following equilibrium constants indicate thereaction that gives the smallest amount of product?
a. $\mathrm{K}_{\mathrm{c}}=5 \times 10^{-10}$
b. $\mathrm{K}_{\mathrm{c}}=5 \times 10^{-1}$
c. $\mathrm{K}_{\mathrm{c}}=5 \times 10^{-0}$
d. $K_{c}=5 \times 10^{1}$
29. For the reaction below, $\mathrm{K}_{\mathrm{p}}=1.16$ at $800^{\circ} \mathrm{C} . \mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ If a $25.0-\mathrm{g}$ sample of CaCO_{3} is put into a 10.2- L container and heated to $800^{\circ} \mathrm{C}$, what percent of the CaCO_{3} will react to reach equilibrium?
a. 23.7%
b. 53.8%
c. 13.4%
d. $100 . \%$
e. 47.4%
30. A sample of solid $\mathrm{NH}_{4} \mathrm{NO}_{3}$ was placed in an evacuated container and then heated so that it decomposed explosively according to the following reaction:

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \leftarrow \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

At equilibrium, the total pressure in the container was found to be 2.03 atm at a temperature of $500^{\circ} \mathrm{C}$. Calculate K_{p}.
a. 33.5
b. 4.12
c. 1.83
d. 1.24
e. 2.03
31. Consider the following reaction:

$$
2 \mathrm{NOCl}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

initially pure $\mathrm{NOCl}(\mathrm{g})$ is placed in a vessel at 3.00 atm . At equilibrium, 0.416% of the NOCl has decomposed. Determine the value for K_{p}.
a. 2.01×10^{-5}
b. 1.09×10^{-7}
c. 2.18×10^{-7}
d. 6.24×10^{-3}
e. 2.72×10^{-8}

Subjective Questions: Please show all work clearly.

A. Given the following information

$$
\begin{array}{ll}
\mathrm{Li}(\mathrm{~s}) \rightarrow \mathrm{Li}(\mathrm{~g}) & \text { Heat of sublimation of } \mathrm{Li}(\mathrm{~s})=161 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{HCl}(\mathrm{~g}) \rightarrow \mathrm{H}(\mathrm{~g})+\mathrm{Cl}(\mathrm{~g}) & \text { Bond energy of } \mathrm{HCl}=427 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Li}(\mathrm{~g}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})+\mathrm{e}^{-} & \text {Onization energy of } \mathrm{Li}(\mathrm{~g})=520 . \mathrm{kJ} / \mathrm{mol} \\
\mathrm{Cl}(\mathrm{~g})+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) & \text { Electron affinity of } \mathrm{Cl}(\mathrm{~g})=349 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Li}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{LiCl}(\mathrm{~s}) & \text { Lattive energy of } \mathrm{LiCl}(\mathrm{~s})=829 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{~g}) & \text { Bond energy of } \mathrm{H}_{2}=432 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Calculate the net change in energy for the reaction

$$
2 \mathrm{Li}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{~g}) \rightarrow 2 \mathrm{LiCl}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

B. 3.0 moles each of carbon monoxide, hydrogen, and carbon are placed in a 2.0

Liter vessel and allowed to come to equilibrium according to the equation:
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}$ (g)
If the equilibrium constant at the temperature of the expreminet is 4.0 , what is the equilibrium concentration of water vapor?
C. Write the 3 resonance structures for OCN^{-}and calculate the formal charge in each.

